Oscillatory Waves in Discrete Scalar Conservation Laws

نویسنده

  • Michael Herrmann
چکیده

We study Hamiltonian difference schemes for scalar conservation laws with monotone flux function and establish the existence of a three-parameter family of periodic travelling waves (wavetrains). The proof is based on an integral equation for the dual wave profile and employs constrained maximization as well as the invariance properties of a gradient flow. We also discuss the approximation of wavetrains and present some numerical results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws

This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...

متن کامل

Discrete and continuous scalar conservation laws

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Abstract Motivated by issues arising for discrete second-order conservation laws and their continuum limits (applicable, for example, to one-dimensional nonlinear spring-mass systems), here we study the corresponding issues in the simpler setting of first-order conservation law...

متن کامل

Adaptive Semidiscrete Central-Upwind Schemes for Nonconvex Hyperbolic Conservation Laws

We discover that the choice of a piecewise polynomial reconstruction is crucial in computing solutions of nonconvex hyperbolic (systems of) conservation laws. Using semi-discrete central-upwind schemes we illustrate that the obtained numerical approximations may fail to converge to the unique entropy solution or the convergence may be so slow that achieving a proper resolution would require the...

متن کامل

A semi–discrete high resolution scheme for nonlinear scalar conservation laws

The purpose of this paper is twofold. Firstly we carry out an extension of the fully discrete third order TVD scheme, for linear case, presented in [8] to nonlinear scalar hyperbolic conservation laws for one and two dimensions. Secondly, we propose a semi-discrete version of the scheme. Time evolution is carried out by the third order TVD RungeKutta method. The advantages of the scheme are its...

متن کامل

Viscous Conservation Laws, Part I: Scalar Laws

Viscous conservation laws are the basic models for the dissipative phenomena. We aim at a systematic presentation of the basic ideas for the quantitative study of the nonlinear waves for viscous conservation laws. The present paper concentrates on the scalar laws; an upcoming Part II will deal with the systems. The basic ideas for scalar viscous conservation laws originated from two sources: th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010